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Abstract 
We show that a simple plane wave analysis can be used even under tight focusing 

conditions to predict the dependence of third-harmonic generation on the polarization 

state of the incident beam. Exploiting this fact, we then show that circularly polarized 

beams may be used to spatially characterize the beam focus and temporally characterize 

ultrashort pulses in high numerical aperture systems by experimentally demonstrating, for 

the first time, novel collinear, background-free, third-harmonic intensity autocorrelations 

in time and space in a high numerical aperture microscope. We also discuss the 

possibility of using third harmonic generation with circularly polarized beams for 

background-free collinear frequency resolved optical gating. 
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One of the most intriguing applications for ultrashort pulse lasers is the generation of 

image contrast through the efficient excitation of an optical nonlinearity. Probably the 

most prevalent nonlinear imaging technique is multiphoton absorption fluorescence 

microscopy[1], which relies on multiphoton absorption fluorescence of either endogenous 

species or specific fluorophores attached as a label to a target body. The high intensity 

dependence of the absorption localizes the subsequent fluorescence emission to the focal 

volume making it possible to generate cross sectional images of the specimen similar to 

those obtained with traditional laser fluorescent confocal imaging techniques. The 

absolute value in using ultrashort pulses for this application is that longer excitation 

wavelengths are used, which allows increased penetration in most tissues, and that out-of-

focal plane bleaching is eliminated. (We note that it has recently been demonstrated that 

bleaching within the focal plane could in fact occur at a substantially higher rate [2].) 

 We undertook this work to further our understanding of another nonlinear 

mechanism, third-harmonic generation (THG), which can be used to provide cross 

sectional images of living biological systems in much the same manner as multiphoton 

absorption fluorescence microscopy. While Ward and New described the THG produced 

by focusing Gaussian beams in their seminal work in the 1960’s [3], it was not until 

Tsang[4] demonstrated that he could produce substantial optical signal consisting of odd 

harmonics by focusing exclusively at an interface under tight focusing conditions (high 

numerical aperture) that its’ use for imaging of fibers and biological specimens[5, 6] and 

for noncollinear frequency-resolved optical gating measurements and interferometric 

autocorrelations[7, 8] arose. In this work, we investigate the polarization dependence of 
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the THG process under tight focusing conditions. Specifically, we show that, even under 

tight focusing conditions, a simple plane wave analysis of the signal can be used to 

predict the polarization dependence of third-harmonic generated in a focus as a function 

of the polarization state of the incident beam. This is significant in that ellipticity is an 

additional parameter that might be exploited to provide image contrast, and these 

measurements enable a quantitative measure of these image intensities in a very simple 

way.  Exploiting the fact that we may use the plane wave analysis, we then characterize 

the spatial focus of high numerical aperture (NA) systems and a make novel collinear, 

background-free, third-harmonic intensity autocorrelation of the pulse at the focus. This 

is significant because prior to this work there has been no single tool that provided 

background free spatio-temporal characterization of focal volumes such as those used in 

high-resolution microscopy. We also discuss the possibility of using third harmonic 

generation with circularly polarized beams for background-free collinear frequency 

resolved optical gating.  

 All the measurements performed in this article use the nonlinear medium most 

convenient for the microscopist: a glass coverslip. Indeed, one of the greatest uses of this 

work is that most of the components that are necessary for spatio-temporal 

characterization are already in place. In multiphoton microscopes, the third harmonic 

signal is necessarily present and quite strong at the ubiquitous glass coverslip interface. 

Finally, as we demonstrate here, a straightforward plane-wave analysis is all that is 

necessary to understand and analyze this signal, even under tight focusing conditions. 

For convenience, this Article is arranged into several sections. The next three 

sections present the core results of the Article. In Section I, we present a simple plane 
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wave analysis to calculate the polarization state of the output THG signal explicitly as a 

function of input ellipticity and present experimental measurements of the dependence of 

THG on the input polarization. These measurements show that only the straightforward, 

plane wave calculations are necessary to predict the polarization dependence of the 

measured THG. In Section II, we use this analysis to determine the output THG signal for 

overlapping Gaussian beams and demonstrate the use of the THG produced by oppositely 

circularly polarized beams for characterization of the lateral spatial profile of a 0.65 NA 

focus. The THG produced at an interface by the focused beam with a linear polarization 

is also used to characterize the axial spatial profile of the focus. Then in Section III, we 

show that oppositely circularly polarized beams may also be used to produce 

background-free THG autocorrelations of the ultrashort pulses at such a focus.  

In Section IV, we show that circularly polarized beams could potentially be used 

to perform collinear, background-free frequency-resolved optical gating (FROG) 

measurements of the temporal pulse amplitude and phase of an ultrashort laser pulse. 

Finally, in Section V, we summarize our results and conclusions. Section VI is an 

Appendix that presents calculations of the derivatives required for performing a 

generalized projections phase retrieval of the amplitude and phase of an ultrashort pulse 

from two of the FROG methods discussed in Section IV. 

I. Ellipticity dependence of THG generation 
 
The problem of determining the polarization of the third-harmonic generated by an 

elliptically polarized, tightly focused Gaussian beam has not, to our knowledge, been 

solved. Bey and Rabin[9] have, however, solved the problem for elliptically polarized 
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plane waves propagating along the optic axis (z-direction) of crystals of point symmetry 

32 that are optically active. The form of their results are equally applicable in form for an 

isotropic medium, and this is the paper quoted by Ward and New[3] when they state that 

a circularly polarized fundamental does not generate harmonic for an isotropic nonlinear 

medium. The actual results that they obtain for the left-handed and right-handed third 

harmonic amplitudes, 

! 

E
3"

±
l( ), generated by an electric field, 
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Here + indicates the left-handed circular components and – indicates the right-handed 

circular components, and the entrance face of the material is assumed to be at 

! 

z = 0. 
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is the non-vanishing component of  the fourth-rank electric susceptibility tensor, and c is 

the speed of light in vacuum. The wave vector mismatch and mismatch of the specific 

rotation of the polarization are, respectively, 
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Explicit Calculation of the THG Polarization State 
Since using the circularly polarized components are often more useful than the linear 

components when dealing with elliptically polarized beams we will now use this simple 

plane wave analysis and calculate the polarization state of the output light explicitly. We 

add the components vectorially  
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In this calculation we are not concerned that the medium is optically active, and therefore 

neglect this rotation. Putting in the amplitudes explicitly and dropping the common 
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We note that, alternatively, the polarization state may be described by an ellipticity 

angle,
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", and the rotation of the polarization ellipse,

! 

" , as shown in Figure 1. The 

ellipticity angle may be written  
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where 
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The rotation of the polarization ellipse is then 
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By explicitly substituting the form of 

! 

"  into the equation for the ellipticity angle, it is 

possible to show that the ellipticity of the generated third-harmonic is 
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We can see by inspection that the the ellipticity angle is only zero when the left and right 

circularly polarized amplitudes have equal square magnitudes, or in other words for a 

linearly polarized input beam.  Thus the third-harmonic beam that is generated is linearly 

polarized only for a linearly polarized input and is elliptically polarized otherwise.  

What then does that ellipticity of the third-harmonic signal look like as the 

ellipticity of the input fundamental beam changes? It is straightforward to calculate the 

variation of the THG amplitude as a function of the amplitudes 

! 

E"

+
0( ) and 

! 

E"

#
0( ). In 
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Figures 2 and 3, we hold the amplitude

! 

E"

+
0( ) constant and vary 

! 

E"

#
0( ) from zero to 

! 

E"

+
0( ) while plotting the x- and y-components of the THG field, and the magnitude and 

the ellipticity angle, respectively. As one would expect, the figures show that the emitted 

field is highly elliptical for small 

! 

E"

#
0( ) where the fundamental beam is nearly circularly 

polarized but becomes linear as the left and right circular components become equal and 

the total fundamental field becomes linear. The magnitude of the THG also increases as 

the total field becomes linear. The rotation of the polarization ellipse is always zero by 

definition. 

Experimental measurements of the THG ellipticity versus input polarization 
The analysis above is valid for a plane wave, but is it a valid representation of the 

variation of the THG signal with input polarization in a high NA microscope where the 

beam is tightly focused? To answer this question, we measured the THG signal as a 

function of the input polarization in a high NA microscope.  

For this measurement, we used our entirely home-built harmonic microscope, 

which is powered by a diode-pumped Nd:glass (phosphate) laser. This laser is based on 

the work of Kopf et al.[10] with the following specifications. The average output power 

is 100 mW, the pulse duration is 150 fs, and the repetition rate is 100 MHz. In a slight 

design simplification, we have achieved this performance using only a single pump 

diode. The glass rod is mounted in a copper heat sink that is cooled only by the ambient 

air. A schematic of the laser design is shown in Figure 4.  

The output of the laser passes through an autocorrelator before being directed 

through the scan mirrors and into the microscope. The polarization state of each of the 

beams can be independently controlled. One arm of the autocorrelator can be delayed in 
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time with respect to the other through an automated axial displacement, as well as 

spatially shifted by an automated angular displacement. This enables both spatial and 

temporal autocorrelations to be performed at the focus of the microscope. 

The microscope also features dual signal detection (Figure 5). Optical signals at 

both the second and third harmonic are captured in the forward direction. In the back 

direction, multiphoton absorption fluorescence signals are measured. In this way images 

created through the three different techniques are fully registered with respect to each 

other. In general the collected radiation is detected with photomultipliers (Hamamatsu 

model R5600U-3) making it possible to scan through scattering and nonscattering 

samples. (For nonscattering samples the PMT’s are often replaced with cameras, 

Hamamatsu model C5985). The PMT signal is sent through a simple current-to-voltage 

converter that is sampled by an analog-to-digital board.  

Detection, and scanning are controlled through a LabView interface that we 

developed specifically for this imaging system. The beam is rastered by two General 

Scanning galvanometric mirrors (model VM2015) that provide lateral image capability, 

while the specimen is scanned axially using an encoded stepper motor stage from AF 

Optical for complete three-dimensional sectioning. The scanned beam is appropriately 

relayed to the objective by the lens series shown in Figure 5. One of the concerns when 

working with ultrashort pulses and nonlinear imaging techniques is the dispersion 

introduced by intermediate relay optics. We have calculated the dispersion for this system 

and find that it is 180 fs2 at 800 nm and 86 fs2 at 1054 nm. In addition, we have calculated 

this dispersion as a function of scan angle. If we consider in this context the dispersion 

only at 800 nm (which is the worse case scenario) we find the dispersion changes by ~10 
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fs2 for an angular shift of 3 degrees. This means a pulse 30 fs in duration will only 

broaden by 2 fs at the extremes of the scan. Thus, pulse dispersion as a function of angle 

through the scan optics is basically negligible for most applications. This is an especially 

important consideration for the spatial correlation measurements, and enables us to 

reliably treat the data as an autocorrelation as opposed to cross correlation.  

Rather than vary the amplitude of one of the beams as was done theoretically to 

obtain the results shown in Figures 2 and 3, we chose to vary the polarizations. In our 

experiment, we placed a motorized λ/2-wave plate and a stationary λ/4-wave plate in the 

beam path to control the polarization of the input fundamental beam.  

In the following, we derive the function used to fit our experimental data: 

(1) Jones matrix for λ/2-waveplate:  
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with β close to 0.5 (used as fit parameter w[0]) 
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Rotation of the half-wave plate gives us an arbitrarily orientated linearly polarized beam: 
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By putting the resulting beam through a λ/4 wave plate, we end up with: 
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On the detection side, we had a polarizer right in front of our photodetector. This 

polarizer can be described by 
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leading finally to the following expression for the measured THG intensity: 
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Fit Function 
Equation (15) was used to fit our data. More precisely, we set the polarizer such that 

! 

p =1 2 , and used the following function: 

 

! 

I fit = A(")6w[2]b2 a4 + b4 + 2a2b2 cos(#$)( )   (16) 

 
 
where a and b are defined through (see also Equation (12)) 
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b = 2sin " (# $ w[4])w[3]{ }cos " (# $ w[4])w[3]{ }    (17) 

 
 
and the amplitude A(

! 

" ) ( =variation of the fundamental power through the rotation of the 

half-wave plate) was measured in the experimental setup. The angle 

! 

"  is the rotation 

angle of the half-wave plate and corresponds to the plotted angle in our graphs. 

We have a total of five fit-parameters; four of the five are shown above (and below) and 

labeled with w[0] through w[4]. The sixth parameter w[5] is buried within the amplitude 

A. The parameters w[0] through w[4] have the following meanings: 

w[0] =

! 

"  Ellipticity This parameter describes how good our λ/4-

wave plate actually is; should be close to 0.5 and the same 

for both polarizations( see e.g. graphs for NA 0.65, Figure 

6: w[0]=0.55) 

w[2] Amplitude  used to adjust overall amplitude 

w[3] Scaling  should be close to 1 
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w[4] Offset used to adjust angle (should be the same within an  

experiment, see e.g. graphs for NA 0.65, Figure 6: 

w[4]=0.15) 

The measured and fit results are shown in Figures 6 and 7. Figure 6 is measured at a NA 

of 0.65, and Figure 7 is measured at an NA of 1.4 This result shows that a plane wave 

analysis of the polarization state produced during THG is still valid even under the strong 

focusing produced by a high-NA objective. We can now use this analysis as the basis for 

several measurements of the spatial and temporal properties of focusing beams in a 

microscope. 

II. The polarization state of the THG signal generated by two 
overlapping Gaussian beams of opposite circular polarization. 

 
When imaging with a high-NA objective, it is important to be able to look at the focal 

intensity produced at the focus as this determines the resolution of the system. To date, 

collinear, interferometric measurements that rely on two-photon absorption fluorescence 

are the primary method for making these measurements [11].  

  Here we would like to demonstrate the use of THG for these measurements. Our 

measurements will show that the results of Ward and New, which described THG by a 

focused linearly polarized Gaussian beam, can be used to describe the axial dependence 

for circularly polarized beams as well. We will also show that a plane wave description of 

the THG by two overlapping Gaussians of opposite circular polarizations may be used to 

accurately describe a spatial THG correlation measurement of the lateral beam focal spot.  
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Now, let us consider the electric field polarization of the total electric field 

generated by two overlapping Gaussian beams propagating in the same direction under 

the assumption that we can use the plane wave analysis to describe the polarization state.  

The fundamental field of a single Gaussian beam of arbitrary elliptical polarization 
A single Gaussian beam of wavelength, 

! 

" , polarized in the i-direction (normal to 

the z-direction) and propagating in the z-direction in an isotropic, nonmagnetic medium 

of index, n, may be written as 
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is given by 
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Note that we use a caret to indicate a complex quantity. We can generate a beam with an 

arbitrary polarization by combining two beams polarized in the x and y directions. 
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Explicitly stating the x and y dependence, 
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Identical elliptically polarized Gaussian beams offset in x by ±x0 

Now let us look at the effect of overlapping two beams offset from each other in one 

lateral dimension. To achieve this, we consider two beams and offset beam #1 from the 

origin by a distance

! 

x
0
 and beam #2 by a distance 

! 

"x
0
 where 

! 

x
0
" 0. Assuming that the 

beams have the same Rayleigh length, the beams are then 
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The total separation is thus 

! 

2x
0
, and for arbitrary polarizations of the beams the total 

electric field is  

! 

ETotal x,y,z,t( ) = E
1
x,y,z,t( ) + E

2
x, y,z,t( ) .     (25) 

 
 
Two overlapping Gaussian beams of opposite circular polarizations 
Now let us assume that 

! 

E
1
x,y,z,t( )  and 

! 

E
2
x, y,z, t( )  have equal amplitudes and that 

! 

E
1
x,y,z,t( )  is left circularly polarized while 

! 

E
2
x, y,z, t( )  is right circularly polarized. 

Using the convention that a photon with right circular polarization has a positive angular 

momentum along the direction of propagation, this means that 
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Ignoring the time dependence, the total electric field may be written as 
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After some manipulation, one may show that 
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Spatial THG correlations for two beams of opposite circular polarization 
Let us now consider the fundamental field of two Gaussian beams that have opposite 

circular polarizations and that are offset by ± x0 in the x-y plane. In the x-y plane, 

! 

z = 0, and ˆ " =1. Thus, Equation 27 becomes 
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If we also assume that essentially all of the THG generated is generated at the z=0 plane, 

which is reasonable for high NA (i.e., as the NA increases the axial volume which 

contributes to the signal decreases, the tighter focusing conditions result in restricting the 

THG signal production ever closer to the interface), we can use the plane wave 

approximation from Equation 4 
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A straightforward way to decompose the electric field into left and right circularly 

polarized components is to use the matrix representations for left and right circular 

polarizers. Suppressing the time and delay dependence for clarity 
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where the plus sign indicates right circular polarization, and  the minus sign indicates left 

circular polarization. Performing this decomposition, we find that 
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Thus, the amplitude of the left and right circularly polarized components are 
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and 
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Substituting these in the equation for the third harmonic and simplifying, we obtain 
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We want to find a measurement that is related to the spatial distribution of the focus in 

the x-y plane, so consider detecting the entire THG signal as a function of the beam 

separation x0. Calculating the intensity of third harmonic, 
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Now if we assume that we can detect all of the third harmonic signal and integrate over x 

and y, 
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Recognizing that the integral in y is a constant in x0, we find 
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Performing the integration over x, 
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Since it is frequently easier to move only one beam, the profile may be rewritten in terms 

of the separation between the beams
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d = 2x
0
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Thus we see that the total THG produced by a two overlapping Gaussian beams of 

opposite circular polarization is Gaussian in the separation of the beams, d. In other 

words, a THG spatial correlation using identical Gaussian beams with opposite circular 

polarizations produces a background-free Gaussian profile, which can be used to 

characterize the spatial dimension of the focus in the xy-plane. One can show that the 

measured full width at half maximum of the THG spatial correlation as a function of 

beam separation, 
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d
FWHM

, is related to the full width at half of intensity profile of the 

beam, 
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D
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, by 
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Spatial characterization of a 0.65 NA focus 
 We have completely measured the spatial characteristics of a 0.65 NA beam using 

the THG signal. In Figure 8, the axial focus is characterized by scanning the coverslip 

through focus and measuring the THG signal as a function of axial displacement. For this 

measurement, the input beam is linearly polarized, and the THG signal is simply 

measured as a function of axial displacement through the focus. The calculated axial 

focus is 4.2 µm (FWHMaxial 

! 

" zo = 2nλ/(NA)2 x 85%), and the measured value is 3.8 µm. 

The calculated value is based on the traditional first node in the Bessel function and is 

given by zo, which is the normal metric used in microscopy for calculating the expected 

axial resolution. The FWHM is ~85% of this value. The agreement is excellent, 

considering that the input to the system is in fact a Gaussian beam.  

In Figure 9, the lateral spatial profile is characterized by the background free spatial 

correlation technique outlined previously. Since the our focused beam is radially 

symmetric and the beams are circularly polarized, there is no preferred direction of the 

lateral scan, and scanning along a single dimension is sufficient to characterize the beam 

profile. Note the excellent fit to the shape Gaussian as described in the model. The 

measured lateral FWHM of the trace is 0.95 µm.  Again assuming a Bessel beam, the 

calculated value for the fundamental lateral focus is 0.85 µm (FWHM =.61λ/NA x 85%). 

Deconvolving the 0.92-µm measured FWHM of the trace using Equation 42, the 

deconvolved lateral FWHM is 0.77 µm, in good agreement with the calculated value. 
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III. Collinear temporal autocorrelation using two beams of opposite 
circular polarization: CTHGx and CTHGy autocorrelation 

Overlapping Opposite Circular Polarizations with a time delay 
Ideally in any nonlinear imaging application it is desirable to know the pulse duration and 

spot size at the focus of the imaging optic. We can characterize the pulse duration at 

focus through a variety of interferometric techniques including two-photon absorption 

autocorrelations[12-14], third harmonic generation[5, 8, 15] or second harmonic 

generation[16]. Collinear techniques such as these are essential if the measurement is to 

be performed at the full NA of the objective. Here we introduce a new method that has 

the advantage over its predecessors in that it is background-free and can be done without 

the addition of a fluorophore [12] or special harmonic crystal [16]. As in [8, 15] all that is 

necessary for making this measurement is a typical glass coverslip.  

We begin by numerically analyzing the third-order intensity autocorrelation 

function produced by circularly polarized beams, which is more complex than its 

predecessors based on plane polarization. From Equation 4, the third-harmonic field 

generated by two oppositely circularly polarized, overlapped beams with one delayed by 

a time 
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where the + and – indicate the polarization of the beams. Assuming the field amplitudes 

are equal, i.e. 
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We may now consider three obvious different autocorrelations: 1) detecting the x-

component of the field, 2) detecting the y-component of the field, and 3) detecting the 

total field. 

X-component 
By placing a linear polarizer that is oriented to pass the x-component of the beam, we 

obtain 
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E
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2
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2
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By varying the delay and detecting with a square law detector, we obtain what we call the 

CTHGx autocorrelation 
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This is essentially a background-free, interferometric autocorrelation as can be seen in 

Figure 10, which shows this autocorrelation as a function of delay. 

Y-component 
By placing a linear polarizer that is oriented to pass the y-component of the beam, we 

obtain 
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By varying the delay and detecting with a square law detector, we obtain the CTHGy 

autocorrelation 
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This is essentially a background-free, interferometric autocorrelation that is 

! 

"  out of 

phase with the x-component autocorrelation as can be seen in Figure 11, which shows 

this autocorrelation as a function of delay. 

Total field detection 
If we detect both polarizations, then 
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Thus, we obtain what we call the CTHG autocorrelation 
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This is essentially a background-free, non-interferometric autocorrelation that is the 

envelope of the x-component and y-component autocorrelations, which we call the 



 27 

CTHG autocorrelation . This can be seen in Figure 12, which shows this autocorrelation 

as a function of delay.  

Collinear, background-free, non-interferometric autocorrelations 
 Figure 13 shows the measured, background free, THG autocorrelation. The 

spectrum of the pulse is also presented. The full width at have maximum of the spectrum 

measures 9.4 nm, and the pulsewidth is 157 fs (assuming a Gaussian) for a time 

bandwidth product of 0.4, indicating that the pulse is essentially transform limited at the 

focal plane of the microscope. 

IV. Collinear THG FROG using two beams of opposite circular 
polarization: CTHG FROG 

While we have shown that we can use polarization effects in the generation of THG to 

obtain measures of the focal parameters and temporal pulse width, full characterization of 

the pulse amplitude and phase may also be possible. Here we discuss using the delay 

dependent signal from the THG produced by two collinearly focused beams of equal 

magnitude and opposite circular polarization to produce a new collinear form of THG 

frequency-resolved optical gating (FROG)[17], which we will call CTHG FROG. The 

advantage of this method is that since the individual beams are circularly polarized, the 

THG signal is generated only when the pulses overlap temporally, which means that 

CTHG FROG is a collinear method, which can thus be used for beams with the full NA 

in a microscope that is inherently background-free. To date, only one other collinear, 

background free FROG exists[16], and it requires placing a second harmonic crystal at 

the focus. CTHG FROG, on the other hand, could use the coverslip as the nonlinear 

medium as was done for the autocorrelation in Section V. 
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For all forms of FROG, the signal is the magnitude squared of the Fourier 

transform of the signal field (i.e. the magnitude squared of the spectrum of the 

autocorrelation field), or 
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Thus for CTHG FROG, we need to deal explicitly with the vector nature of the field 
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Thus, let us rewrite the FROG signal as 
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Substituting the form of the total signal field for THG in, the FROG signal becomes 
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Performing the vector multiplication, 
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Separating out the integrals, we find 
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and we can see that the CTHG FROG signal is essentially the sum of the two possible 

noncollinear THG FROG traces.  

The form of Equation 56 is not the standard form that is used for phase retrieval in 

FROG, and while it may be possible to alter the algorithms that are currently used for to 

retrieve the field form FROG traces to retrieve the field from this form, the difficulty of 

measuring the spectrum properly in two polarizations at once makes it experimentally 

simpler to place a polarizer in before the spectrometer to separate out either the x or y 

component of the field. Thus using only the x-component of the THG, we obtain the 

CTHGx FROG signal  
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and using only the y-component of the THG, we obtain the CTHGy FROG signal 
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These are just the frequency-resolved forms of the CTHGx and CTHGy autocorrelations 

that were derived in Section III.  Figure 14 shows a theoretical the CTHGx FROG trace 

for a 5-fs Gaussian pulse. The trace is background free, but it is fringe-resolved, which 

greatly increases the amount of data that is required relative to a more typical non-fringe 

resolved FROG trace, especially for pulses that are many cycles long. The CTHGy 

FROG trace is similar to the CTHGx FROG trace except with the fringes 180° out of 

phase just as occurs in the Figures 10 and 11 for the CTHGx and CTHGy 

autocorrelations. 

We have written a generalized-projection code for the retrieval of the CTHGx 

traces. For the readers’ convenience, the mathematical forms of the generalized 

projections for phase retrieval from traces of these forms are derived in the Appendix. 

While we are able to retrieve some theoretical traces to the numerical accuracy of the 

machine, we are currently experiencing problems with stagnation of the algorithm even 

for traces of simple pulses that are only a few cycles long. This may be due to the 

difficulty of required explicit handling the high-frequency component of the electric field, 

which is not required in the non-fringe resolved traces for which FROG is know to work 

well. Since we have had difficulty with the retrieval for the similar but even more 

difficult problem of interferometric second-harmonic generation (ISHG) FROG, which is 

also fringe-resolved, but not background free, we cannot recommend attempting fringe-
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resolved FROG measurements at this time. We do believe, however, that improved 

algorithms may yet make such measurements useful for actual retrieval. We also note that 

experimentally the FROG trace is itself an accurate representation of the pulse and thus 

the CTHG, CTHGx or CTHGy FROG traces may be of significant value for 

characterizing the pulse at the focus of high-NA objectives even without a full retrieval of 

the field and phase. 

V. Summary & Conclusions 
In this work, we have investigated the polarization dependence of the THG process under 

tight focusing conditions. Specifically, we have shown that, even under tight focusing 

conditions, a simple plane wave analysis of the signal can be used to predict the 

polarization dependence of third-harmonic generated in a focus as a function of the 

polarization state of the incident beam. This is significant in that ellipticity is an 

additional parameter that might be exploited to provide image contrast, and these 

measurements enable a quantitative measure of these image intensities in a very simple 

way.  Exploiting the fact that we could use the plane wave analysis, we then showed that 

circularly polarized beams can be used to quantitatively characterize the lateral 

dependence of the spatial focus of high NA systems, which can be combined with a 

measurement of the axial dependence using a linear polarization for a complete spatial 

characterization of the spatial focus . 

We have also used our new understanding of the plane wave character of the 

generation at the focus to make novel collinear, background-free, third-harmonic 

intensity autocorrelations of the pulse at the focus. This is significant because prior to this 

work there has been no single tool that provided background free spatio-temporal 
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characterization of focal volumes such as those used in high-resolution microscopy. We 

also discuss the possibility of using third harmonic generation with circularly polarized 

beams for background-free collinear frequency resolved optical gating. 
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VII. Appendix—Generalized Projections for CTHG FROG 
Here we will follow the notation of Trebino[17] and derive the generalized projections 

that are for used the phase retrieval for the FROG traces obtained using either the x- or y-

component of the signal field. In the generalized projections method of phase retrieval, 

we minimize the functional distance 

 

! 

Z = E sig

k( ) ti," j( ) #E sig

k+1( ) ti," j( )
2

i, j= 1

N

$       (A1) 

 
 
where the summation in i and j indicate the individual axes in the NxN FROG traces and 

k is the iteration of the FROG algorithm.  

X-component 
To do this, we explicitly substitute the mathematical form of the nonlinearity, so for the 

x-component of the CTHG signal 
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To actually perform the functional minimization, we must calculate 
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For convenience let 
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As in [17]I have dropped the k superscripts to simplify the equations that result. 
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the k+1st iteration for the pulse field. Thus we can calculate the derivatives as follows. 
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Substituting in for 

! 

"
CTHGx , we obtain 
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Using the following identities 
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we obtain 
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Explicitly using the delta functions to eliminate the summations over i, 

 



 36 

! 

"ZCTHGx

"Re E tk( ){ }
=

j=1

N

# $ 2E tk( )E tk $ % j( ) + E
2
tk $ % j( )[ ][

         & E sig

'
tk,% j( ) $E

'2
tk( )E

'
tk $ % j( ) $E

'
tk( )E

'2
tk $ % j( )[ ]]

+

j=1

N

# $ 2E tk + % j( )E tk( ) + E
2
tk + % j( )[ ][

          & E sig

'
tk + % j ,% j( ) $E

'2
tk + % j( )E

'
tk( ) $E

'
tk + % j( )E

'2
tk( )[ ]] + c.c.

 

          (A9) 
 

! 

"Z
CTHGx

"Re E tk( ){ }
=

j=1

N

# $2E tk( )E tk $ % j( ) $E
2
tk $ % j( )[ ][

        & E sig

'
tk,% j( ) $E

'2
tk( )E '

tk $ % j( ) $E
'
tk( )E '2

tk $ % j( )[ ]

        + $2E tk + % j( )E tk( ) $E
2
tk + % j( )[ ]

          & E sig

'
tk + % j ,% j( ) $E

'2
tk + % j( )E

'
tk( ) $E

'
tk + % j( )E

'2
tk( )[ ]]

       + c.c.

 

          (A10) 
 
 
 
We may calculate the other derivative, similarly by starting with 
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and using the following identities 
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We obtain 
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          (A13) 
Y-component 
Putting a polarizer in the THG output to pass only the y-component of the THG, the 

FROG signal becomes 
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The y-component of the CTHG signal is then 
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To actually perform the functional minimization, we must calculate 
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Solving as was done for the x-component 
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Figure Captions 
Figure 1  Polarization ellipse to show definitions of ellipticity and rotation angles. 

Figure 2  The x- and y-components of the third-harmonic field as functions of the ratio 

of the right- and left-circularly polarized amplitudes of the fundamental field. 

Figure 3  The magnitude and ellipticity angle of the third-harmonic field as functions of 

the ratio of the right- and left-circularly polarized amplitudes of the 

fundamental field. 

Figure 4 The diode-pumped Nd:glass (phosphate) laser used for the harmonic 

generation microscope in Figure 7. The average output power is 100 mW, the 

pulse duration is 150 fs, and the repetition rate is 100 MHz.  

Figure 5 The home-built microscope used for THG measurements in this Article. 

Optical signals at both the second and third harmonic are captured in the 

forward direction. In the back direction, multiphoton absorption fluorescence 

signals are measured. In this way images created through the three different 

techniques are fully registered with respect to each other.  

Figure 6 The measured and fit THG signals for generation using a 0.65 NA objective to 

focus at the surface of a coverslip. 

Figure 7 The measured and fit THG signals for generation using a 1.4 NA objective to 

focus at the surface of a coverslip. 

Figure 8 The THG signal as a function of axial displacement obtained by scanning the 

coverslip through focus. The calculated axial focus is 4.3 µm (FWHM = 

2nλ/(NA)2 x 85%), and the measured value is 3.8 µm. 
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Figure 9 The lateral spatial profile as characterized by the background free spatial THG 

correlation technique. Note the excellent fit to a Gaussian as described in the 

model. The calculated value for the fundamental lateral focus is 0.85 µm 

(FWHM =.61λ/NA x 85%). Deconvolving the 0.92-µm measured FWHM of 

the trace using Equation 42, the deconvolved lateral FWHM is 0.77 µm, in 

good agreement with the calculated value.  

Figure 10 The x-component CTHG autocorrelation of a 15-fs, transform limited 

Gaussian pulse with a center wavelength of 800 nm. 

Figure 11 The y-component CTHG autocorrelation of a 15-fs, transform limited 

Gaussian pulse with a center wavelength of 800 nm. 

Figure 12 The total-field CTHG autocorrelation of a 15-fs, transform limited Gaussian 

pulse with a center wavelength of 800 nm. 

Figure 13 The measured, background free, THG autocorrelation. The spectrum of the 

pulse is also presented. The full width at have maximum of the spectrum 

measures 9.4 nm, and the pulsewidth 157 fs (assuming a Gaussian) for a time 

bandwidth product of 0.4, indicating that the pulse is essentially transform 

limited at the focal plane of the microscope. 

Figure 14 Calculated background free, collinear FROG trace. 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Figure 9 
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Figure 10 
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Figure 11 
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Figure 12 
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Figure 13 
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Figure 14 
 

 
 

 


